Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Caldicellulosiruptor saccharolyticus transcriptomes reveal consequences of chemical pretreatment and genetic modification of lignocellulose.

Identifieur interne : 001497 ( Main/Exploration ); précédent : 001496; suivant : 001498

Caldicellulosiruptor saccharolyticus transcriptomes reveal consequences of chemical pretreatment and genetic modification of lignocellulose.

Auteurs : Sara E. Blumer-Schuette [États-Unis] ; Jeffrey V. Zurawski [États-Unis] ; Jonathan M. Conway [États-Unis] ; Piyum Khatibi [États-Unis] ; Derrick L. Lewis [États-Unis] ; Quanzi Li [États-Unis] ; Vincent L. Chiang [États-Unis] ; Robert M. Kelly [États-Unis]

Source :

RBID : pubmed:28322023

Descripteurs français

English descriptors

Abstract

Recalcitrance of plant biomass is a major barrier for commercially feasible cellulosic biofuel production. Chemical and enzymatic assays have been developed to measure recalcitrance and carbohydrate composition; however, none of these assays can directly report which polysaccharides a candidate microbe will sense during growth on these substrates. Here, we propose using the transcriptomic response of the plant biomass-deconstructing microbe, Caldicellulosiruptor saccharolyticus, as a direct measure of how suitable a sample of plant biomass may be for fermentation based on the bioavailability of polysaccharides. Key genes were identified using the global gene response of the microbe to model plant polysaccharides and various types of unpretreated, chemically pretreated and genetically modified plant biomass. While the majority of C. saccharolyticus genes responding were similar between plant biomasses; subtle differences were discernable, most importantly between chemically pretreated or genetically modified biomass that both exhibit similar levels of solubilization by the microbe. Furthermore, the results here present a new paradigm for assessing plant-microbe interactions that can be deployed as a biological assay to report on the complexity and recalcitrance of plant biomass.

DOI: 10.1111/1751-7915.12494
PubMed: 28322023
PubMed Central: PMC5658599


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Caldicellulosiruptor saccharolyticus transcriptomes reveal consequences of chemical pretreatment and genetic modification of lignocellulose.</title>
<author>
<name sortKey="Blumer Schuette, Sara E" sort="Blumer Schuette, Sara E" uniqKey="Blumer Schuette S" first="Sara E" last="Blumer-Schuette">Sara E. Blumer-Schuette</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695</wicri:regionArea>
<wicri:noRegion>27695</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zurawski, Jeffrey V" sort="Zurawski, Jeffrey V" uniqKey="Zurawski J" first="Jeffrey V" last="Zurawski">Jeffrey V. Zurawski</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695</wicri:regionArea>
<wicri:noRegion>27695</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Conway, Jonathan M" sort="Conway, Jonathan M" uniqKey="Conway J" first="Jonathan M" last="Conway">Jonathan M. Conway</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695</wicri:regionArea>
<wicri:noRegion>27695</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Khatibi, Piyum" sort="Khatibi, Piyum" uniqKey="Khatibi P" first="Piyum" last="Khatibi">Piyum Khatibi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695</wicri:regionArea>
<wicri:noRegion>27695</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lewis, Derrick L" sort="Lewis, Derrick L" uniqKey="Lewis D" first="Derrick L" last="Lewis">Derrick L. Lewis</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695</wicri:regionArea>
<wicri:noRegion>27695</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Quanzi" sort="Li, Quanzi" uniqKey="Li Q" first="Quanzi" last="Li">Quanzi Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695</wicri:regionArea>
<wicri:noRegion>27695</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chiang, Vincent L" sort="Chiang, Vincent L" uniqKey="Chiang V" first="Vincent L" last="Chiang">Vincent L. Chiang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695</wicri:regionArea>
<wicri:noRegion>27695</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kelly, Robert M" sort="Kelly, Robert M" uniqKey="Kelly R" first="Robert M" last="Kelly">Robert M. Kelly</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695</wicri:regionArea>
<wicri:noRegion>27695</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28322023</idno>
<idno type="pmid">28322023</idno>
<idno type="doi">10.1111/1751-7915.12494</idno>
<idno type="pmc">PMC5658599</idno>
<idno type="wicri:Area/Main/Corpus">001402</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001402</idno>
<idno type="wicri:Area/Main/Curation">001402</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001402</idno>
<idno type="wicri:Area/Main/Exploration">001402</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Caldicellulosiruptor saccharolyticus transcriptomes reveal consequences of chemical pretreatment and genetic modification of lignocellulose.</title>
<author>
<name sortKey="Blumer Schuette, Sara E" sort="Blumer Schuette, Sara E" uniqKey="Blumer Schuette S" first="Sara E" last="Blumer-Schuette">Sara E. Blumer-Schuette</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695</wicri:regionArea>
<wicri:noRegion>27695</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zurawski, Jeffrey V" sort="Zurawski, Jeffrey V" uniqKey="Zurawski J" first="Jeffrey V" last="Zurawski">Jeffrey V. Zurawski</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695</wicri:regionArea>
<wicri:noRegion>27695</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Conway, Jonathan M" sort="Conway, Jonathan M" uniqKey="Conway J" first="Jonathan M" last="Conway">Jonathan M. Conway</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695</wicri:regionArea>
<wicri:noRegion>27695</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Khatibi, Piyum" sort="Khatibi, Piyum" uniqKey="Khatibi P" first="Piyum" last="Khatibi">Piyum Khatibi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695</wicri:regionArea>
<wicri:noRegion>27695</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lewis, Derrick L" sort="Lewis, Derrick L" uniqKey="Lewis D" first="Derrick L" last="Lewis">Derrick L. Lewis</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695</wicri:regionArea>
<wicri:noRegion>27695</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Quanzi" sort="Li, Quanzi" uniqKey="Li Q" first="Quanzi" last="Li">Quanzi Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695</wicri:regionArea>
<wicri:noRegion>27695</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chiang, Vincent L" sort="Chiang, Vincent L" uniqKey="Chiang V" first="Vincent L" last="Chiang">Vincent L. Chiang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695</wicri:regionArea>
<wicri:noRegion>27695</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kelly, Robert M" sort="Kelly, Robert M" uniqKey="Kelly R" first="Robert M" last="Kelly">Robert M. Kelly</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695</wicri:regionArea>
<wicri:noRegion>27695</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Microbial biotechnology</title>
<idno type="eISSN">1751-7915</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acids (chemistry)</term>
<term>Bacterial Proteins (genetics)</term>
<term>Bacterial Proteins (metabolism)</term>
<term>Biotransformation (MeSH)</term>
<term>Firmicutes (genetics)</term>
<term>Firmicutes (metabolism)</term>
<term>Lignin (metabolism)</term>
<term>Populus (chemistry)</term>
<term>Populus (genetics)</term>
<term>Populus (metabolism)</term>
<term>Populus (microbiology)</term>
<term>Transcriptome (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acides (composition chimique)</term>
<term>Biotransformation (MeSH)</term>
<term>Firmicutes (génétique)</term>
<term>Firmicutes (métabolisme)</term>
<term>Lignine (métabolisme)</term>
<term>Populus (composition chimique)</term>
<term>Populus (génétique)</term>
<term>Populus (microbiologie)</term>
<term>Populus (métabolisme)</term>
<term>Protéines bactériennes (génétique)</term>
<term>Protéines bactériennes (métabolisme)</term>
<term>Transcriptome (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Acids</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Bacterial Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Lignin</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Acides</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Firmicutes</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Firmicutes</term>
<term>Populus</term>
<term>Protéines bactériennes</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Firmicutes</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Firmicutes</term>
<term>Lignine</term>
<term>Populus</term>
<term>Protéines bactériennes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biotransformation</term>
<term>Transcriptome</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biotransformation</term>
<term>Transcriptome</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Recalcitrance of plant biomass is a major barrier for commercially feasible cellulosic biofuel production. Chemical and enzymatic assays have been developed to measure recalcitrance and carbohydrate composition; however, none of these assays can directly report which polysaccharides a candidate microbe will sense during growth on these substrates. Here, we propose using the transcriptomic response of the plant biomass-deconstructing microbe, Caldicellulosiruptor saccharolyticus, as a direct measure of how suitable a sample of plant biomass may be for fermentation based on the bioavailability of polysaccharides. Key genes were identified using the global gene response of the microbe to model plant polysaccharides and various types of unpretreated, chemically pretreated and genetically modified plant biomass. While the majority of C. saccharolyticus genes responding were similar between plant biomasses; subtle differences were discernable, most importantly between chemically pretreated or genetically modified biomass that both exhibit similar levels of solubilization by the microbe. Furthermore, the results here present a new paradigm for assessing plant-microbe interactions that can be deployed as a biological assay to report on the complexity and recalcitrance of plant biomass.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28322023</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>05</Month>
<Day>31</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1751-7915</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>10</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2017</Year>
<Month>11</Month>
</PubDate>
</JournalIssue>
<Title>Microbial biotechnology</Title>
<ISOAbbreviation>Microb Biotechnol</ISOAbbreviation>
</Journal>
<ArticleTitle>Caldicellulosiruptor saccharolyticus transcriptomes reveal consequences of chemical pretreatment and genetic modification of lignocellulose.</ArticleTitle>
<Pagination>
<MedlinePgn>1546-1557</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/1751-7915.12494</ELocationID>
<Abstract>
<AbstractText>Recalcitrance of plant biomass is a major barrier for commercially feasible cellulosic biofuel production. Chemical and enzymatic assays have been developed to measure recalcitrance and carbohydrate composition; however, none of these assays can directly report which polysaccharides a candidate microbe will sense during growth on these substrates. Here, we propose using the transcriptomic response of the plant biomass-deconstructing microbe, Caldicellulosiruptor saccharolyticus, as a direct measure of how suitable a sample of plant biomass may be for fermentation based on the bioavailability of polysaccharides. Key genes were identified using the global gene response of the microbe to model plant polysaccharides and various types of unpretreated, chemically pretreated and genetically modified plant biomass. While the majority of C. saccharolyticus genes responding were similar between plant biomasses; subtle differences were discernable, most importantly between chemically pretreated or genetically modified biomass that both exhibit similar levels of solubilization by the microbe. Furthermore, the results here present a new paradigm for assessing plant-microbe interactions that can be deployed as a biological assay to report on the complexity and recalcitrance of plant biomass.</AbstractText>
<CopyrightInformation>© 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Blumer-Schuette</LastName>
<ForeName>Sara E</ForeName>
<Initials>SE</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zurawski</LastName>
<ForeName>Jeffrey V</ForeName>
<Initials>JV</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Conway</LastName>
<ForeName>Jonathan M</ForeName>
<Initials>JM</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Khatibi</LastName>
<ForeName>Piyum</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lewis</LastName>
<ForeName>Derrick L</ForeName>
<Initials>DL</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Quanzi</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chiang</LastName>
<ForeName>Vincent L</ForeName>
<Initials>VL</Initials>
<AffiliationInfo>
<Affiliation>Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kelly</LastName>
<ForeName>Robert M</ForeName>
<Initials>RM</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>03</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Microb Biotechnol</MedlineTA>
<NlmUniqueID>101316335</NlmUniqueID>
<ISSNLinking>1751-7915</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000143">Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>11132-73-3</RegistryNumber>
<NameOfSubstance UI="C036909">lignocellulose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9005-53-2</RegistryNumber>
<NameOfSubstance UI="D008031">Lignin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000143" MajorTopicYN="N">Acids</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001711" MajorTopicYN="N">Biotransformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000068536" MajorTopicYN="N">Firmicutes</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008031" MajorTopicYN="N">Lignin</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="N">Transcriptome</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>08</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2016</Year>
<Month>11</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>11</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>3</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>6</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>3</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28322023</ArticleId>
<ArticleId IdType="doi">10.1111/1751-7915.12494</ArticleId>
<ArticleId IdType="pmc">PMC5658599</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Comput Biol. 2001;8(6):625-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11747616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Apr 15;100(8):4939-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12668766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biostatistics. 2001 Jun;2(2):183-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12933549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2004 Oct;70(10):6098-112</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15466556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Microbiol. 2006 May;185(4):270-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16463182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2007 Jul;25(7):759-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17572667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2008 Nov;74(21):6720-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18776029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009;4(4):e5271</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19384422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Dec;75(24):7718-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19820143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2010 Apr 15;105(6):1131-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19998280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2010 Jun;13(3):305-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20097119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2010 Dec;76(24):8084-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20971878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Mar 1;108(9):3803-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21321194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2011 Jul;108(7):1559-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21337327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Apr 12;108(15):6300-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21444820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2011 Dec;102(24):11105-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21865030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 2012 Oct 31;161(3):366-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22484128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Mar 27;4:67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23543255</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Chem Biol. 2013 Jun;17(3):462-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23623045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Jan 14;111(2):845-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24379366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2014 May 22;7:75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24876889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2014 Sep;80(18):5828-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25015893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2015 Jun;25:151-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26051036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2015 Oct;81(20):7159-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26253670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2015 Jun 10;8:81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26269711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2016 Jan;199:49-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26321216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2015 Dec 18;8:216</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26692083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2016 Feb 04;9:31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26855670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2016 Apr;14(5):288-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27026253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2016 Jul;87(1):103-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27030440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2016 Jun 13;82(13):3979-3987</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27107121</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Blumer Schuette, Sara E" sort="Blumer Schuette, Sara E" uniqKey="Blumer Schuette S" first="Sara E" last="Blumer-Schuette">Sara E. Blumer-Schuette</name>
</noRegion>
<name sortKey="Chiang, Vincent L" sort="Chiang, Vincent L" uniqKey="Chiang V" first="Vincent L" last="Chiang">Vincent L. Chiang</name>
<name sortKey="Conway, Jonathan M" sort="Conway, Jonathan M" uniqKey="Conway J" first="Jonathan M" last="Conway">Jonathan M. Conway</name>
<name sortKey="Kelly, Robert M" sort="Kelly, Robert M" uniqKey="Kelly R" first="Robert M" last="Kelly">Robert M. Kelly</name>
<name sortKey="Khatibi, Piyum" sort="Khatibi, Piyum" uniqKey="Khatibi P" first="Piyum" last="Khatibi">Piyum Khatibi</name>
<name sortKey="Lewis, Derrick L" sort="Lewis, Derrick L" uniqKey="Lewis D" first="Derrick L" last="Lewis">Derrick L. Lewis</name>
<name sortKey="Li, Quanzi" sort="Li, Quanzi" uniqKey="Li Q" first="Quanzi" last="Li">Quanzi Li</name>
<name sortKey="Zurawski, Jeffrey V" sort="Zurawski, Jeffrey V" uniqKey="Zurawski J" first="Jeffrey V" last="Zurawski">Jeffrey V. Zurawski</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001497 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001497 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28322023
   |texte=   Caldicellulosiruptor saccharolyticus transcriptomes reveal consequences of chemical pretreatment and genetic modification of lignocellulose.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28322023" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020